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INTRODUCTION

Agriculture is the backbone of the Indian economy. It is gifted
with varied soil and climatic resources, which enables the
production of different crops. India is one of the major
producing countries of various crops. Therefore, forecasting
the yield has many benefits. Predicting the yield of the crop
within the season prior before its harvest is known as yield
forecasting. The top 10 countries where yield forecast is
implemented are the United States, India, Canada, China,
Spain, Germany, Australia, United Kingdom, Italy and France
(Fig. 1). Thompson (1969) was the first to forecast the yield of
corn by regressing the average regional yields with the weather
to generate a general trend in the former Soviet Union. The
biotic and abiotic factors like pests and genetics of the crop,
soils and climate (temperature, relative humidity, wind, rainfall
and solar radiation) affect the yield of the crops
(Hanumanthappa et al., 2016a). These factors are taken as
input parameters in yield forecasting models. Weather data is
recorded according to the standard meteorological weeks
(SMW) i.e. first week of crop season to last week of crop season.
All the weather data used in the models are weekly average. In
contrast, the rainfall is taken as a weekly summation.

India stands second in the forecasting of yield. Forecasting
provides ample time for policymakers to formulate suitable
policies. By comparing the forecasted supply with the demand,
import and export related decisions can be made. With the
help of a demand-supply schedule, prices of the grains can
be fixed. Allocation of food grains to the public distribution

system, disaster relief, and storage can be planned better.
Traders can decide the purchase of crop yield; fix the laborers’
working hours, and their wages and the sales. The impact of
climate change and different crop management practices can
be assessed by changing the weather parameters, date of
sowing, fertilizers, spacing, irrigation and so on
(Hanumanthappa et al., 2016a). Suitability of varieties to
different locations can be tested, thereby reducing the time
and resources involved in multi location trails. Overall, the
food security of the nation and the price fluctuation can be
managed.

Many scientists have used different methods of forecasting in
various crops to date. The review is done to summarize some
of those and know the possible future works.

MATERIALS AND METHODS

Methods of crop yield forecasting

Basso and Liu (2018) classified the forecasting methods region
wise (Fig. 2). It can be seen that globally, remote sensing data
is used in more than 50 percent of the papers.
Agrometeorological data follow this. A similar trend is observed
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Table 1: Methods of yield forecasting.
Method of forecasting Selected references
1.Statistical models using
a)Meteorological inputs. Murata (1975); Sreenivasan and Banerjee (1978).
b)Sensor based inputs. Erdle et al. (2011); Bannari et al. (1995).
2.Crop simulation models Asseng et al. (2014); Basso et al. (2016).
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in Asia, Africa and Americas. In Oceania, there is the use of
agro-meteorological data in many of the papers, followed by
remote sensing. In Europe, both the data are used equally.

Use of Sensors in crop yield forecasting
Each crop has a specific heat signature and this signature is
detected by using sensors. Satellites like SPOT Vegetation,
AVHRR, LANDSAT, MODIS, Radar satellite, and handheld
sensors like Green seekers, N-tester, Spadometer, Crop Circle
and Field Spec can be used to detect these signatures. Since
forecasting is done before the harvest of the crop, the weather
data that we deal with are of two types- known data recorded
till the day of forecasting and the unknown data, between the
forecasting day and the harvest. Different scientists have used
various methods, mainly- Historical data, mean of historical
data, weather generator models, climate forecast models and
satellite derived climate variables.

Yield forecasting using statistical models-

(crop yield) is done. Ranjan et al. (2012) developed regression
equations for yield prediction of Wheat using remote sensing
and meteorological data. Dharmaraja et al. (2019) forecasted
the yield of Bajra by linear regression and time series models.
Gupta et al. (2018) developed different statistical models using
weather variables for different U.P. districts to forecast mustard
yield. Sawa and Ibrahim (2011) studied the impact of different
dry spell parameters on the yield of millet and sorghum in
Nigeria and they correlated 21 dry spell parameters with the
yield. Poonam et al. (2017) developed three models using
weather parameters (artificial variables generated from weekly
weather values) as input data to forecast the yield of wheat in
Hisar, Harayana. Annu et al. (2018) forecasted rice yield by
discriminant function analysis of yield and related it to its
biometrical characters in U.P., India. Kour et al. (2018)
forecasted rice yield in Gujarat using the time series model.
Rice yield data and historical weather data were used as inputs
for the model. Dry matter production, Agro-meterological
Indices of Rice as influenced by methods of establishment
and transplanting dates (Chandrashekar et al. 2010). Patil et
al. (2012) developed three different statistical models to predict
the yield of wheat using remote sensing and vegetative
parameter in Dharwad. Yadav et al. (2018) made a pre harvest
forecast of pigeonpea by regression analysis of weather
variables in U.P. Mahapatra and Dash (2019) forecasted the
production of green gram in Odisha by time series model
using the best fit ARIMA (2,1,0) model. Sarvesh et al. (2019)
forecasted rapeseed and mustard yield for different years in
the Sultanpur district of U.P. using a discriminate functional
analysis of weather data. Girma et al. (2006) used the NDVI,
leaf color, and chlorophyll content measured by the SPAD
meter in the multiple linear regression to forecast wheat yield
under nutrient application treatments at the Feekes 7 stage
(second node appearance). Gero et al. (2017) used the
proximally sensed reflectance data of 34 cultivars to develop
vegetation indices and to calibrate PLSR models. They
concluded that PLSR and REIP gave superior predictions of
grain yield of spring barley. Raja et al. (2014) used the time
series rainfall data of 25 years to derive the 1- and 3-month
Standardized Precipitation Index of different wet season
months and related the meteorological drought and its impact
on rice productivity in Odisha. Patel et al. (2006) used the
remotely sensed estimates of the fraction of absorbed
photosynthetically active radiation (fAPAR) and daily
temperature as input to a simple model based on light-use
efficiency to estimate wheat yields at the pixel level in Harayana.
Ayyoob and Krishnadas (2013) developed the linear
correlation coefficient and multiple linear regression models
among yield with various weather factors of 13 years observed
during the stage of 50 per cent flowering of groundnut crop.
Sarika et al. (2011) used time series model to forecast the
pigeonpea yield by using the production data of 38 years.
Verma et al. (2015) recommend using of linear mixed models
for pre-harvest yield forecasting of the mustard crop in
Haryana. Pritam and Deepak (2018) correlated the
transplanting data and biomass derived from remote sensing
data for its yield prediction in Shivamogga. Gupta et al. (2009)
made a forecast and compared the forecasting methods using
parametric models like polynomial, logarithmic, inverse, and
exponential, with those of Box-Jenkins techniques like ARMA,
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 Figure 1: Country wise crop yield forecasting

These are mathematical equations (empirical models), by using
independent variables like temperature, plant morphology,
remote sensor data etc forecasting of the dependent variable
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Figure 2: Region wise distribution of various crop yield forecasting
methods.
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ARIMA using 41 years data in West Bengal. . Sellam and
Poovammal (2016) used Regression Analysis to predict rice
crop yield in Tamil Nadu. Barmeier et al. (2017) and
Christenson et al. (2016) forecasted barley yield at anthesis
and soybean at yield early-to-mid reproductive stages using a
PLS model with hyper-spectra reflectance. Sandeep et al.
(2018) compared different efficiencies of different models in
predicting the yields of sugarcane using LANDSAT data. Prity
et al. (2016) forecasted the yields of pigeonpea using different
linear and non-linear statistical models. Amrender and
Lalmohan (2005) developed multiple linear regression models
to forecast the yield of Indian mustard using weather
parameters. Sandeep et al. (2015) forecasted rice yield and
jute over Bihar using weather parameters and technological
trends. Dubey et al. (2018) developed empirical models
between VCI and historical yield of sugarcane over 52 major
sugarcane-growing districts in five states of India by stepwise
regression technique to forecast its yield. Mkhabela et al.
(2011) reported that MODIS-NDVI could be used effectively
to predict crop yields across the Canadian Prairies one to two
months before harvest. Farai et al. (2014) predicted the maize
yield throughout Zimbabwe by regressing the number of dry
dekads derived from VCI against official ground-based maize
yield estimates to generate simple linear regression models.
Bu et al. (2017) developed linear regressions and compared

the satellite imagery and ground-based active optical sensors
to predict the yields in Sugar Beet, Spring Wheat, Corn, and
Sunflower. Toshichika et al. (2018) used statistical models to
seasonal temperature and precipitation hindcast data, which
were derived from a multi model ensemble (MME) in crops
like maize, rice, wheat and sorghum. The analysis was
performed for five individual atmosphere-ocean coupled
general circulation model (GCM) and two MME datasets
generated from average methods and the mosaic method.
Sharma et al. (2018) forecasted Soybean and wheat crop yield
based on the statistical model in Malwa agroclimatic zone
using weather variables and historical crop yield. Anup et al.
(2006) predicted the corn and soybean crop yield for Iowa
using remote sensing and surface parameters by piecewise
linear regression method with breakpoint and a non-linear
Quasi-Newton multi-variate optimization method.  Ajit Sharma
et al. (2016) used different time series modeling techniques
like a straight line, second degree parabola, exponential,
modified exponential, Gompertz and logistic using the
secondary data from 1980-2010 to forecast the production of
apple in H.P, India. Vijaya et al. (2005) predicted the yield of
castor and found that the canopy air-temperature differentials
using infrared thermometer and yield were inversely related.
Kogan et al. (2013) forecasted the wheat yield in Ukraine by
using NDVI values from the MODIS, at 250 m spatial resolution.
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Prity Kumara et al. (2014) developed different Autoregressive
Integrated Moving Average (ARIMA) models by using time
series data of sixty two years (1950-2012) to forecast the rice
yield in India and concluded that ARIMA (1, 1, 1) is the best
fitted model.
Crop simulation models (CSM)-
These are computer software packages that are readily
available to plot the data and fit the model. They are alternative
and less time consuming means of determining the optimum
crop yield. The Decision Support System for Agrotechnology
Transfer (DSSAT) is a software application program comprising
crop simulation models for over 42 crops (Version 4.7) and
tools to facilitate effective use of the models. It was developed
by the International Benchmark Sites Network for Agro-
technological Transfer (IBSNAT) in the 1980s, with the first
official release in 1989. The development has continued in
affiliation with the International Consortium for Agricultural
Systems Applications (ICASA). DSSAT is like a shell storing
different CSM. The main advantage of using CSM is that it
mimics daily plant growth. Mojarad et al. (2018) in Iran
forecasted the yield of safflower under different saline irrigation
strategies using the Aqua Crop model, version 4.0. Pal et
al. (2013) forecasted the wheat yield in Palampur, H.P. using
the CERES Wheat model for which stochastic weather
generator was used to get the unknown weather data. Nain et
al. (2004) forecasted the yield of wheat using the CERES wheat
model and two different technology trends in central IGP of
India. Sarvesh et al. (2019) forecasted the yield of several
chickpea cultivars under different sowing dates using DSSAT
software version 4.6. Walikar et al. (2018) studied the impact
of climate change by forecasting the yield of soybean variety
JS20-29 at different locations of Madhya Pradesh, India, using
the CROPGRO model. Vimal et al. (2019) forecasted the yield
of different chickpea varieties for finding out the suitable date
of sowing using the DSSAT model in U.P. Kamal et al. (2018)
used DSSAT-CERES-Rice model to forecast the yield under
different nitrogen levels in Meghalaya. Debjyoti and Lalu
(2018) forecast rice yield under different nitrogen and irrigation
management levels in West Bengal using ORYZA2000.
Mumtaz et al. (2018) predicted the cotton yield with a new
hybrid copula driven approach that combined the Markov
Chain Monte Carlo-based simulation model with genetic
programming algorithm. Machakaire et al. (2016) forecasted
the yield and tuber size of potato eight weeks before the final
harvest by LINTUL-Potato-DSS model which used the linear
relationship between radiation intercepted by the crop and
radiation-use efficiency, long-term and actual weather and crop
data. Julien et al. (2014) forecasted the yield of sugarcane by
an empirical relationship method, the Kumar-Monteith
efficiency model, and a forced-coupling method of a sugarcane
crop model (MOSICAS) and the satellite-derived fraction of
absorbed photosynthetically active radiation. Abdul Haris et
al. (2020) used the Info Crop model to forecast the crop yield
and duration of the potato crop in Bihar due to climate change.
Gang Li et al. (2011) used Hyper spectral remote sensing
combined with important biophysical parameters like CCD
and LAI successfully in castor growth assessment and yield
prediction on China’s coastal saline land using OSAVI model.
Rojalin et al. (2013) forecasted the wheat yield in Punjab state
of India by incorporating biophysical parameters like LAI and

management parameters like planting date, derived from
satellite data in crop simulation model WOFOST.
(Hanumanthappa et al., 2010) recorded the pattern of annual
and seasonal rainfall variability in coastal district of Karnataka.
Rohit et al. (2020) used Agriculture Production Systems
Simulator (APSIM) model to know the impact of climate change
(change in temperature and rainfall patterns) on the productivity
of maize in the state Madhya Pradesh by using 74 soil profiles
from thirty districts. Jia et al. (2011) observed that the WOFOST
model could simulate wheat yield with a difference of less
than five percent while validating the WOFOST model in North
China. Ghosh et al. (2014) developed a rice yield prediction
system for Bhubaneswar, India, by combining the extended
range forecast and CERES-rice model. Kulapramote et al.
(2018) used the Aqua Crop model and moderate-resolution
satellite images to simulate the rice yield for small-scale farmers.
Gowtham et al. (2020) studied the impact of global warming
(temperature increase of 1.5ºC) on the productivity of C3 and
C4 crops like rice and maize in the year 2035 and 2053 in
Tamil Nadu using DSSAT. Dua et al. (2020) studied the impact
of climate change on the productivity of three potato varieties
in Madhya Pradesh using the WOFOST crop growth
simulation model in 38 locations.
Accuracies
The accuracy of the methods was represented as the r-squared
values between the forecasted yield and the observed grain
yields. Basso and Liu (2018) grouped the reported r-squared
value based on the forecasting methods (statistical, process
based and remote sensing) and forecasting time (early, mid
and late crop stage) (Fig. 3). It is observed that when the
forecasting time progressed, the accuracy also increased (fig.
3 A, D, G and fig. 3 C, F, I). Forecasting at early stages in all the
techniques has a predominant r2 value of 0.5-0.6. Similarly,
forecasting during later stages has a predominant r2 value of
0.7-0.8 (fig. 3 A, C and fig. 3 G, I). The process based models
(CSM) are evaluated using different methods like frequency
distribution, probability distribution and measure of central
tendency rather than r2 value. The forecasting of the yield at
later stages, i.e., one month before harvest, gives a satisfactory
forecasting result.
Limitations of models in crop yield forecasting
Most of the model needs to be calibrated to represent the
genetics of the crops and such information is often not
available. Lack of/improper crop model calibration causes
inaccurate yield forecasts (Kolotii et al., 2015). Long-term good
quality datasets of yield, agro meteorological conditions, crop
genetics and sensor data are required to develop efficient yield-
forecasting models which are difficult in some countries. Getting
good quality remotely-sensed data and the post data-
acquisition process is a significant challenge. Yield-forecasting
statistical models are specific to crops, users and regions and
cannot be worked outside the range of parameterized
conditions. Unforeseen events that occur between the
forecasting day and the harvest day reduce the precision of
the forecasting.

RESULTS  AND DISCUSSION

Depending on scientist, the models are calibrated and

validated using recent 10 to 25 years field and experimental
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data.Statistical models to forecast yield is relatively simple as it
establishes a relation between the yield and input variables
like temperature, rainfall, historical data, etc. It is simple to use
and less parameter-intensive. Incorporating the remotely
sensed information to the statistical models can improve the
forecasting accuracy, particularly for large-scale yield forecasts
(Manjunath et al., 2002). The number of parameters used in
the process-based simulation models is larger. It results in the
interaction effects between weather, soil, crop, and
management on the grain and biomass yield. There must be
proper long-term good quality datasets of yield,
agrometeorological conditions, remotely sensed data, and
genetics of the crop to get higher accuracy. The skill in operating
software, generating remote sensing data, processing,
interpretation and storage must be developed in the individuals.
There is a possibility of using AI and machine learning in
forecasting the crop yield to reduce human errors and get
higher accuracy.
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